Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
The Geometry of Walker Manifolds
- M. Brozos-Vázquez, E. García-Río, P. Gilkey, S. Nikcevic, R. Vázquez-Lorenzo
- Mathematics, Computer Science
- The Geometry of Walker Manifolds
- 1 June 2009
TLDR
Osserman Manifolds in Semi-Riemannian Geometry
- E. García-Río, D. N. Kupeli, R. Vázquez-Lorenzo
- Mathematics
- 22 March 2002
The Osserman Conditions in Semi-Riemannian Geometry.- The Osserman Conjecture in Riemannian Geometry.- Lorentzian Osserman Manifolds.- Four-Dimensional Semi-Riemannian Osserman Manifolds with Metric… Expand
Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators
- J. C. Díaz-Ramos, E. García-Río, R. Vázquez-Lorenzo
- Mathematics
- 27 July 2005
A complete description of Osserman four-manifolds whose Jacobi operators have a nonzero double root of the minimal polynomial is given.
Riemann Extensions of Torsion-Free Connections with Degenerate Ricci Tensor
- E. Calviño-Louzao, E. García-Río, R. Vázquez-Lorenzo
- Mathematics
- Canadian Journal of Mathematics
- 1 October 2010
Abstract Correspondence between torsion-free connections with nilpotent skew-symmetric curvature operator and IP Riemann extensions is shown. Some consequences are derived in the study of… Expand
Applications of Affine and Weyl Geometry
- E. García-Río, P. Gilkey, S. Nikcevic, R. Vázquez-Lorenzo
- Computer Science, Mathematics
- Applications of Affine and Weyl Geometry
- 30 May 2013
TLDR
Paraquaternionic Kähler Manifolds
- E. García-Río, Y. Matsushita, R. Vázquez-Lorenzo
- Mathematics
- 1 March 2001
The geometry of modified Riemannian extensions
- E. Calviño-Louzao, E. García-Río, P. Gilkey, R. Vázquez-Lorenzo
- Mathematics
- Proceedings of the Royal Society A: Mathematical…
- 12 January 2009
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We… Expand
Affine Osserman connections and their Riemann extensions
- E. García-Río, D. N. Kupeli, M. E. Vázquez-Abal, R. Vázquez-Lorenzo
- Mathematics
- 1 September 1999
Abstract Osserman property is studied for affine torsion-free connections with special attention to the 2-dimensional case. As an application, examples of nonsymmetric and even not locally… Expand
NONSYMMETRIC OSSERMAN PSEUDO-RIEMANNIAN MANIFOLDS
- E. García-Río, M. E. Vázquez-Abal, R. Vázquez-Lorenzo
- Mathematics
- 1998
Four-dimensional Osserman–Ivanov–Petrova metrics of neutral signature
- E. Calviño-Louzao, E. García-Río, R. Vázquez-Lorenzo
- Physics
- 16 April 2007
Algebraic curvature tensors which are Osserman–IP in the (− − + +)-signature setting are completely determined. As a consequence, it is shown that a four-dimensional pointwise Osserman–IP manifold is… Expand