Associativity of crossed products by partial actions, enveloping actions and partial representations
- M. Dokuchaev, R. Exel
- Mathematics
- 4 December 2002
Given a partial action a of a group G on an associative algebra A, we consider the crossed product A × α G. Using the algebras of multipliers, we generalize a result of Exel (1997) on the…
Inverse semigroups and combinatorial C*-algebras
- R. Exel
- Mathematics
- 7 March 2007
Abstract.We describe a special class of representations of an inverse semigroup S on Hilbert's space which we term tight. These representations are supported on a subset of the spectrum of the…
Circle actions on C*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence
- R. Exel
- Mathematics
- 22 November 1992
Abstract We introduce a method to study C *-algebras possessing an action of the circle group, from the point of view of their internal structure and their K -theory. Under relatively mild conditions…
Morita equivalence for crossed products by Hilbert $C^\ast$-bimodules
- Beatriz Abadie, S. Eilers, R. Exel
- Mathematics
- 1998
A new look at the crossed-product of a C*-algebra by an endomorphism
- R. Exel
- MathematicsErgodic Theory and Dynamical Systems
- 12 December 2000
We give a new definition for the crossed-product of a C*-algebra A by a *-endomorphism $\alpha$, which depends not only on the pair $(A,\alpha)$ but also on the choice of a transfer operator. With…
Amenability for Fell bundles.
- R. Exel
- Mathematics
- 23 April 1996
Given a Fell bundle $\B$, over a discrete group $\Gamma$, we construct its reduced cross sectional algebra $C^*_r(\B)$, in analogy with the reduced crossed products defined for C*-dynamical systems.…
Partial actions of groups and actions of inverse semigroups
- R. Exel
- Mathematics
- 27 November 1995
Given a group G, we construct, in a canonical way, an inverse semigroup S(G) associated to G. The actions of S(G) are shown to be in one-to-one correspondence with the partial actions of G, both in…
FINITE-DIMENSIONAL REPRESENTATIONS OF FREE PRODUCT C*-ALGEBRAS
Our main theorem is a characterization of C*-algebras that have a separating family of finite-dimensional representations. This characterization makes possible a solution to a problem posed by…
Crossed products by twisted partial actions and graded algebras
- M. Dokuchaev, R. Exel, J. Simón
- Mathematics
- 24 June 2008
PARTIAL DYNAMICAL SYSTEMS AND C -ALGEBRAS GENERATED BY PARTIAL ISOMETRIES
- R. Exel, Marcelo Laca, John Quigg
- Mathematics
- 18 December 1997
A collection of partial isometries whose range and initial pro- jections satisfy a specified set of conditions often gives rise to a partial rep- resentation of a group. The corresponding C -algebra…
...
...