Learn More
The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary(More)
Oligonucleotide microarrays were employed to quantitate mRNA levels from a large number of genes regulated by the p53 transcription factor. Responses to DNA damage and to zinc-inducible p53 were compared for their transcription patterns in cell culture. A cluster analysis of these data demonstrates that genes induced by gamma radiation, UV radiation, and(More)
Polycythemia vera (PV) is a human clonal hematological disorder. The molecular etiology of the disease has not been identified. PV hematopoietic progenitor cells exhibit hypersensitivity to growth factors and cytokines, suggesting possible abnormalities in protein-tyrosine kinases and phosphatases. By sequencing the entire coding regions of cDNAs of(More)
Mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene have been shown to cause autosomal recessive polycystic kidney disease (ARPKD), but the cellular functions of the gene product (PKHD1) remain uncharacterized. To illuminate its properties, the spatial and temporal expression patterns of PKHD1 were determined in mouse, rat, and human(More)
The DNA damage response (DDR) has a critical role in maintaining genome integrity and serves as a barrier to tumorigenesis by promoting cell-cycle arrest, DNA repair, and apoptosis. The DDR is activated not only by genotoxic agents that induce DNA damage, but also during aberrant cell-division cycles caused by activated oncogenes and inactivated tumor(More)
PZR is an immunoglobulin superfamily cell surface protein containing a pair of immunoreceptor tyrosine-based inhibitory motifs. As a glycoprotein, PZR displays a strong association with concanavalin A (ConA), a member of the plant lectin family. Treatment of several cell lines with ConA caused tyrosine phosphorylation of a major cellular protein.(More)
SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein(More)
SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through(More)
The ATR-ATRIP kinase complex regulates cellular responses to DNA damage and replication stress. Mass spectrometry was used to identify phosphorylation sites on ATR and ATRIP to understand how the kinase complex is regulated by post-translational modifications. Two novel phosphorylation sites on ATRIP were identified, S224 and S239. Phosphopeptide-specific(More)