Learn More
Genomic Signal Processing (GSP) has been defined as the analysis, processing, and use of genomic signals for gaining biological knowledge and the translation of that knowledge into systems-based applications, where by genomic signals we mean the measurable events, principally the production of mRNA and protein carried out within the cell. Owing to the(More)
We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and(More)
BACKGROUND To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data.(More)
BACKGROUND Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net(More)
We propose a statistical method based on graphical Gaussian models for estimating large gene networks from DNA microarray data. In estimating large gene networks, the number of genes is larger than the number of samples, we need to consider some restrictions for model building. We propose weighted lasso estimation for the graphical Gaussian models as a(More)
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge.(More)
Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as bayesian networks, only provide an averaged network for all(More)
BACKGROUND Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing(More)
PURPOSE To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. PATIENTS AND METHODS Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of(More)
Epidemiological studies have suggested that the encounter with commensal microorganisms during the neonatal period is essential for normal development of the host immune system. Basic research involving gnotobiotic mice has demonstrated that colonization at the age of 5 weeks is too late to reconstitute normal immune function. In this study, we examined the(More)