Learn More
The Pichia acaciae killer toxin (PaT) arrests yeast cells in the S-phase of the cell cycle and induces DNA double-strand breaks (DSBs). Surprisingly, loss of the tRNA-methyltransferase Trm9 - along with the Elongator complex involved in synthesis of 5-methoxy-carbonyl-methyl (mcm(5)) modification in certain tRNAs - conferred resistance against PaT.(More)
The linear cytoplasmic element pPE1B from Pichia etchellsii CBS2011 (synonym Debaryomyces etchellsii) was totally sequenced. It consists of 12835 bp and has a remarkable high A+T content of 77.3%. The termini of pPE1B were found to consist of inversely orientated identical nucleotide repetitions 161 base pairs long, to which proteins are probably covalently(More)
The interaction of light with particles suspended in the air is the cause of some beautiful effects. Among these effects are the colors of the sunset, the blue of the sky, and the appearance of a scene in fog. A lighting model that takes into account the effects of scattering by suspended particles is presented. A method of computing the colors of the sun(More)
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for(More)
Forward differencing is widely used to generate rapidly large numbers of points at equally space parameter values along a curve. A failing of forward differencing is the tendency to generate many extraneous points for curves with highly nonuniform parameterizations. A key result is presented and proven, namely, that a few levels of subdivision, prior to(More)
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae.(More)
The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (NHEJ), the two alternative repair(More)
The exozymocin secreted by Kluyveromyces lactis causes sensitive yeast cells, including Saccharomyces cerevisiae, to arrest growth in the G(1) phase of the cell cycle. Despite its heterotrimeric (alpha beta gamma) structure, intracellular expression of its smallest subunit, the gamma-toxin, is alone responsible for the G(1) arrest. The alpha subunit,(More)
A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the(More)
Strains of the yeast Pichia inositovora that carry the linear plasmids pPin1-1 (18 kb) and pPin1-3 (10 kb) display a killer activity towards Saccharomyces cerevisiae. Cloning and sequencing of the smaller plasmid, pPin1-3, revealed that it is 9683 bp long and has 154-bp terminal inverted repeats. Comparison of pPin1-3 with the only other completely(More)