Learn More
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of(More)
Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately(More)
Octopus cells in the posteroventral cochlear nucleus of mammals detect the coincidence of synchronous firing in populations of auditory nerve fibers and convey the timing of that coincidence with great temporal precision. Earlier recordings in current clamp have shown that two conductances contribute to the low input resistance and therefore to the ability(More)
Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory(More)
We aimed to investigate the protective effects of melatonin and 2.45 GHz electromagnetic radiation (EMR) on brain and dorsal root ganglion (DRG) neuron antioxidant redox system, Ca(2+) influx, cell viability and electroencephalography (EEG) records in the rat. Thirty two rats were equally divided into four different groups namely group A1: Cage control,(More)
An in vitro slice preparation was used for intracellular recording from rat central nucleus of inferior colliculus neurons (CNIC). Stable intracellular recordings were made on 184 neurons, 27 of which were successfully stained with iontophoresed biocytin. Twenty one of those were classified as flat (F), four as less flat (LF) and the remaining two neurons(More)
Electrophysiological studies from mice in vitro have suggested that octopus cells of the mammalian ventral cochlear nucleus (VCN) are anatomically and biophysically specialized for detecting the coincident firing of a population of auditory nerve fibers. Recordings from cats in vivo have shown that octopus cells fire rapidly and with exceptional temporal(More)
Trimetazidine (TMZ) is an anti-ischemic agent which has been used for years as an effective anti-anginal agent in cardiac patients. The aim of the study was to investigate the effect of TMZ on the level of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), catalase (CAT), histopathological changes and the number of myelinated axons in a crush(More)
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input(More)
Transient outward currents were characterized with twin electrode voltage clamp techniques in isolated F76 and D1 neuronal membranes (soma only) of Helix aspersa subesophageal ganglia. In this study, in addition to the transient outward current (A-current, I(A)) described by Connor and Stevens (1971b), another fast outward current, referred to as I(Adepol)(More)