Learn More
Functional nuclei and mitotic spindles are shown to assemble around DNA-coated beads incubated in Xenopus egg extracts. Bipolar spindles assemble in the absence of centrosomes and kinetochores, indicating that bipolarity is an intrinsic property of microtubules assembling around chromatin in a mitotic cytoplasm. Microtubules nucleated at dispersed sites(More)
Microtubules are dynamic polymers that move stochastically between periods of growth and shrinkage, a property known as dynamic instability. Here, to investigate the mechanisms regulating microtubule dynamics in Xenopus egg extracts, we have cloned the complementary DNA encoding the microtubule-associated protein XMAP215 and investigated the function of the(More)
Epithelial cells are refractory to extracellular lipopolysaccharide (LPS), yet when presented inside the cell, it is capable of initiating an inflammatory response. Using invasive Shigella flexneri to deliver LPS into the cytosol, we examined how this factor, once intracellular, activates both NF-kappaB and c-Jun N-terminal kinase (JNK). Surprisingly, the(More)
XMAP215 belongs to a family of proteins involved in the regulation of microtubule dynamics. In this study we analyze the function of different parts of XMAP215 in vivo and in Xenopus egg extracts. XMAP215 has been divided into three fragments, FrN, FrM and FrC (for N-terminal, middle and C-terminal, respectively). FrN co-localizes with microtubules in egg(More)
Assembly of a mitotic spindle requires the accurate regulation of microtubule dynamics which is accomplished, at least in part, by phosphorylation-dephosphorylation reactions. Here we have investigated the role of serine-threonine phosphatases in the control of microtubule dynamics using specific inhibitors in Xenopus egg extracts. Type 2A phosphatases are(More)
Meiotic and mitotic spindles are required for the even segregation of duplicated chromosomes to the two daughter cells. The mechanism of spindle assembly is not fully understood, but two have been proposed that are not mutually exclusive. The 'search and capture' model suggests that dynamic microtubules become progressively captured and stabilized by the(More)
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore-microtubule attachment and disrupt chromosome(More)
An insertion sequence (IS) element of Brucella ovis, named IS6501, was isolated and its complete nucleotide sequence determined. IS6501 is 836 bp in length and occurs 20-35 times in the B. ovis genome and 5-15 times in other Brucella species. Analysis of the junctions at the sites of insertion revealed a small target site duplication of four bases and(More)
In the organ of Corti, outer hair cells (OHCs) are sensory effectors responsible for the high sensitivity and sharp tuning of the cochlea. Whilst the distribution and organization of actin and tubulin in adult OHCs have been extensively studied, less is known about developing OHCs. In this study we use a quantitative cytometric approach on rat isolated OHCs(More)
The assembly of a mitotic spindle requires the interaction of microtubules with chromosomes. As a cell enters mitosis, long microtubules are converted to short ones, as microtubules become unstable. Dynamic microtubules are then stabilised by chromosomes, forming a bipolar spindle. In this review, we discuss the different roles of kinetochores and(More)
  • 1