R. T. Wiegner

Learn More
Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of(More)
Hemorrhagic shock (HS) after tissue trauma increases the complication and mortality rate of polytrauma (PT) patients. Although several murine trauma models have been introduced, there is a lack of knowledge about the exact impact of an additional HS. We hypothesized that HS significantly contributes to organ injury, which can be reliably monitored by(More)
The humoral serine proteases of the complement system and the coagulation system play central roles during the events of an inflammatory response. While the complement system confers immunoprotective and -regulatory functions, the coagulation cascade is responsible to ensure hemostatic maintenance. Although these two systems individually unfold during(More)
Delayed bone fracture healing and the formation of non-unions represent an important clinical problem, particularly in polytrauma patients who suffer from posttraumatic systemic inflammation. However, the underlying pathomechanisms remain unclear. Neutrophil granulocytes are crucial effector cells in the systemic immune response and represent the most(More)
Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as "actors" in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory,(More)
After severe trauma, the immune system is challenged with a multitude of endogenous and exogenous danger molecules. The recognition of released danger patterns is one of the prime tasks of the innate immune system. In the last two decades, numerous studies have established the complement cascade as a major effector system that detects and processes such(More)
Introduction: Fracture healing is a complex process, which is tightly regulated by the immune system (1). It is known that systemic inflammation can impair fracture healing, e.g. in case of multiple trauma (2, 3), the exact mechanisms being still poorly understood. Systemic posttraumatic inflammation is characterized by the rapid release of proinflammatory(More)
During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we(More)
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological(More)