Learn More
The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in(More)
[1] Using the results obtained from a coupled ocean-atmosphere-land model with medium computational resolution, we investigated how the hydrology of the continents changes in response to the combined increases of greenhouse gases and sulfate aerosols in the atmosphere, which are determined based upon the IS92a scenario. In order to extract the forced(More)
Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of(More)
Understanding the cause of differences among general circulation model projections of carbon dioxide-induced climatic change is a necessary step toward improving the models. An intercomparison of 14 atmospheric general circulation models, for which sea surface temperature perturbations were used as a surrogate climate change, showed that there was a roughly(More)
Snow feedback is expected to amplify global warming caused by increasing concentrations of atmospheric greenhouse gases. The conventional explanation is that a warmer Earth will have less snow cover, resulting in a darker planet that absorbs more solar radiation. An intercomparison of 17 general circulation models, for which perturbations of sea surface(More)
The geographical distribution of the change in soil wetness in response to an increase in atmospheric carbon dioxide was investigated by using a mathematical model of climate. Responding to the increase in carbon dioxide, soil moisture in the model would be reduced in summer over extensive regions of the middle and high latitudes, such as the North American(More)
Global warming caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest(More)
By use of a coupled ocean–atmosphere–land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the " IS92a " scenario. In addition, it presents the simulated(More)
[1] A salient characteristic of river discharge is its temporal variability. The time series of flow at a point on a river can be viewed as the superposition of a smooth seasonal cycle and an irregular, random variation. Viewing the random component in the spectral domain facilitates both its characterization and an interpretation of its major physical(More)