Learn More
The regional distribution of radioactive ligand binding in rat brain for the different receptors of the gamma-aminobutyric acidA (GABAA)-benzodiazepine receptor/chloride channel complex was measured on tissue sections by autoradiography. Seven ligands were employed including [3H]muscimol for high-affinity GABA agonist sites; [3H]bicuculline methochloride(More)
Conantokin G (Con G) is a 17-amino-acid peptide antagonist of N-methyl-D-aspartate (NMDA) receptors isolated from the venom of the marine cone snail, Conus geographus. The mechanism of action of Con G has not been well defined; both competitive and noncompetitive interactions with the NMDA-binding site have been proposed. In this study the mechanism of(More)
Felbamate (2-phenyl-1,3-propanediol dicarbamate) is a novel agent effective against maximal electroshock, pentylenetetrazol and other chemically induced seizures in mice and rats. Felbamate has been proposed as a novel anticonvulsant for the treatment of generalized tonic-clonic and complex partial seizures. In addition, felbamate has been shown to have(More)
The autoradiographic localization of subcomponents of the gamma-aminobutyric acid (GABA) receptor-chloride ionophore complex has provided insight into the distribution of this macromolecular system. GABA inhibits neurons by preferentially increasing the permeability of the affected membrane to chloride ions. This inhibition can be modified by the presence(More)
Chronic treatment of gerbils with 1-aminocyclopropanecarboxylic acid (a high affinity, partial agonist at strychnine-insensitive glycine receptors) resulted in a 3-fold increase in survival, a significant improvement in neurological status, and an extensive protection of vulnerable brain regions following severe forebrain ischaemia. A bolus of(More)
The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a(More)
The dicarbamate felbamate has been shown to be capable of competing for the binding of 5,7-[3H]dichlorokynurenic acid ([3H]DCKA) to strychnine-insensitive glycine receptors in sections of human postmortem brain. The IC50 for this interaction was 305.8 microM and the inhibition was complete at 1 mM. Autoradiographic localization of [3H]DCKA binding revealed(More)
Alpha-Conotoxins, peptides produced by predatory species of Conus marine snails, are potent antagonists of nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels involved in synaptic transmission. We determined the NMR solution structure of the smallest known alpha-conotoxin, ImI, a 12 amino acid peptide that binds specifically to neuronal(More)
The distribution of dopamine D-1 receptors has been determined in the rat brain by a quantitative in vitro light-microscopic autoradiographic method. The binding of [N-methyl-3H]-SCH 23390 to slide-mounted tissue sections takes place with characteristics expected of a substance that recognizes D-1 receptors. The binding is saturable, has high affinity, and(More)
Recent reports have demonstrated that the synthetic gamma-aminobutyric acid (GABA)-derivative, SR 95531 [2-(3'-carbethoxy-2'-propyl)-3-amino-6-paramethoxy-phenyl-pyrid azinium bromide], possesses selective GABAA antagonistic properties. Because of its potency for recognition of GABAA sites, this agent has been used to identify GABAA receptors. In the(More)