Learn More
To establish infection in the host, malaria parasites export remodeling and virulence proteins into the erythrocyte. These proteins can traverse a series of membranes, including the parasite membrane, the parasitophorous vacuole membrane, and the erythrocyte membrane. We show that a conserved pentameric sequence plays a central role in protein export into(More)
Directly labelling locus-specific primers for microsatellite analysis is expensive and a common limitation to small-budget molecular ecology projects. More cost-effective end-labelling of PCR products can be achieved through a three primer PCR approach, involving a fluorescently labelled universal primer in combination with modified locus-specific primers(More)
The apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are important intracellular organelles and targets of several anti-malarial drugs. In recent years, our group and others have begun to piece together the metabolic pathways of these organelles, with a view to understanding their functions and identifying further anti-malarial(More)
The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene(More)
The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high(More)
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors(More)
Proteolytic activity present in the excreted/secreted (ES) material of newly excysted juvenile (NEJ) Fasciola hepatica was biochemically analyzed. By gelatin substrate SDS-PAGE, only one region of activity was observed in the NEJ ES material at a molecular mass of 29 kDa. Both the secreted cathepsin L from adult fluke and the 29-kDa proteolytic activity of(More)
The Plasmodium falciparum serine repeat antigen (SERA) has shown considerable promise as a blood stage vaccine for the control of malaria. A related protein, SERPH, has also been described in P. falciparum. Whereas their biological role remains unknown, both proteins possess papain-like protease domains that may provide attractive targets for therapeutic(More)
Serine repeat antigens (SERAs) are a family of secreted "cysteine-like" proteases of Plasmodium parasites. Several SERAs possess an atypical active-site serine residue in place of the canonical cysteine. The human malaria parasite Plasmodium falciparum possesses six "serine-type" (SERA1 to SERA5 and SERA9) and three "cysteine-type" (SERA6 to SERA8) SERAs.(More)
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their(More)