Learn More
Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such(More)
The authors of the International Technology Roadmap for Semiconductors-the industry consensus set of goals established for advancing silicon integrated circuit technology-have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic(More)
Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the(More)
Teramac is a massively parallel experimental computer built at Hewlett-Packard Laboratories to investigate a wide range of different computational architectures. This machine contains about 220,000 hardware defects, any one of which could prove fatal to a conventional computer, and yet it operated 100 times faster than a high-end single-processor(More)
A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where(More)
Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in(More)
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as(More)
High density metal cross bars at 17 nm half-pitch were fabricated by nanoimprint lithography. Utilizing the superlattice nanowire pattern transfer technique, a 300-layer GaAs/AlGaAs superlattice was employed to produce an array of 150 Si nanowires (15 nm wide at 34 nm pitch) as an imprinting mold. A successful reproduction of the Si nanowire pattern was(More)
The Hodgkin-Huxley model for action potential generation in biological axons is central for understanding the computational capability of the nervous system and emulating its functionality. Owing to the historical success of silicon complementary metal-oxide-semiconductors, spike-based computing is primarily confined to software simulations and specialized(More)