Learn More
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and(More)
Pyruvate carboxylase is the predominant anaplerotic enzyme in CNS tissues, and thus provides for net utilization of glucose to generate citric acid cycle intermediates such as alpha-ketoglutarate and malate for replenishment of the neurotransmitter pools of glutamate, GABA and aspartate. Studies reported in this paper involving immunocytochemical and(More)
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that(More)
Tramadol hydrochloride produced dose-related antinociception in mouse abdominal constriction [ED50 = 1.9 (1.2-2.6) mg/kg i.p.], hot-plate [48 degrees C, ED50 = 21.4 (18.4-25.3) mg/kg s.c.; 55 degrees C, ED50 = 33.1 (28.2-39.1) mg/kg s.c.] and tail-flick [ED50 = 22.8 (19.2-30.1) mg/kg s.c.] tests. Tramadol also displayed antinociceptive activity in the rat(More)
Although it is well established that the analgesic effects of morphine are mediated by opioid receptors, previous studies have shown that some opioids additionally inhibit the uptake of serotonin and norepinephrine. The present investigation of a diverse group of opioids revealed that structurally identifiable subgroups inhibited the neuronal reuptake of(More)
McN-5652 is one of a series of substituted pyrrolo-isoquinolines that, as a group, potently inhibit the uptake of one or more of the monoamines, norepinephrine, serotonin and dopamine. McN-5652 is characterized by exceptionally high potency as an inhibitor of the uptake of serotonin by rat brain synaptosomes in vitro (Ki approximately 0.6 nM) and ex vivo(More)
In this overview, we discuss the discovery and development of topiramate (TPM) as an anticonvulsant, including notable aspects of its chemical, biologic, and pharmacokinetic properties. In particular, we highlight its anticonvulsant profile in traditional seizure tests and animal models of epilepsy and the results of recent electrophysiological and(More)
Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, gamma-aminobutyrate (GABA), glutamine, and aspartate. D-[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis(More)
The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not(More)