Learn More
Distinguishing Alzheimer's disease (AD) and frontotemporal dementia (FTD) currently relies on a clinical history and examination, but positron emission tomography with [(18)F] fluorodeoxyglucose (FDG-PET) shows different patterns of hypometabolism in these disorders that might aid differential diagnosis. Six dementia experts with variable FDG-PET experience(More)
Flurodeoxyglucose positron emission tomography (FDG-PET) is being explored to determine its ability to differentiate between a diagnosis of Alzheimer's disease (AD) and fronto-temporal dementia (FTD). We have examined statistical discrimination procedures to help achieve this purpose and compared the results to visual ratings of FDG-PET images. The methods(More)
The three human alleles of apolipoprotein E (APOE) differentially influence outcome after CNS injury and affect one's risk of developing Alzheimer's disease (AD). It remains unclear how ApoE isoforms contribute to various AD-related pathological changes (e.g., amyloid plaques and synaptic and neuron loss). Here, we systematically examined whether apoE(More)
Neuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with(More)
Several epidemiological and preclinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β-amyloid (Aβ) production and inhibit neuroinflammation. However, follow-up clinical trials, mostly using selective cyclooxygenase (COX)-2 inhibitors,(More)
One of the hallmarks of the pathology in Alzheimer's disease is the deposition of amyloid plaques throughout the brain, especially within the hippocampus and amygdala. Transgenic mice that overexpress the Swedish mutation of human amyloid precursor protein (hAPPswe; Tg2576) show age-dependent memory deficits in hippocampus-dependent learning tasks. However,(More)
Microscopic findings in Alzheimer’s disease (AD) at autopsy include a wide cortical distribution of beta amyloid (Aβ)-containing plaques and diminished numbers of pyramidal neurons in CA1 of hippocampus and tyrosine hydroxylase-positive (TH+) neurons in the locus coeruleus (LC). To better understand the neuropathology underlying cognitive decline in AD, we(More)
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus(More)
Many elderly individuals remain dementia-free throughout their life. However, some of these individuals exhibit Alzheimer disease neuropathology on autopsy, evidenced by neurofibrillary tangles (NFTs) in AD-specific brain regions. We conducted a genome-wide association study to identify genetic mechanisms that distinguish non-demented elderly with a heavy(More)
Idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia clinically linked with the alpha-synucleinopathies multiple systems atrophy (MSA), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Available autopsy information is limited but suggests that the pathologic basis of idiopathic RBD may be neuronal loss and Lewy(More)