Learn More
Photodegradation and low bioavailability are major hurdles for the therapeutic use of curcumin. Aim of the present study was to formulate transferrin-mediated solid lipid nanoparticles (Tf-C-SLN) to increase photostability, and enhance its anticancer activity against MCF-7 breast cancer cells. Tf-C-SLN were prepared by homogenization method and(More)
Sustained release thermosensitive solution containing cytarabine-loaded liposome delivery system offers the possibility of reduced dosing frequency and sustained drug action. Biodegradable and biocompatible chitosan-beta-glycerophosphate (C-GP) thermosensitive solution having the property to gel at body temperature and to maintain its physical integrity for(More)
Curcumininoids, obtained from the rhizomes of Curcuma longa L., Zingiberaceae (turmeric), are the most widely used phytoconstituent in food industry and recently for its therapeutic activity. It has very wide spectrum of therapeutic use like in inflammation, psoriasis, various tumors, wound healing and also in neurodegenerative diseases like Alzheimer's(More)
Curcumin, a natural phytoconstituent, is known to be therapeutically effective in the treatment of various cancers such as, breast cancer, lung cancer, pancreatic cancer, brain cancer, etc. However, low bioavailability and photodegradation of curcumin hampers its overall therapeutic efficacy. Anionic polymerization method was employed for the preparation of(More)
Beta amyloid plays a main role in the pathophysiology of Alzheimer's disease by inducing oxidative stress in the brain. Curcumin, a natural antioxidant, is known to inhibit beta amyloid and beta amyloid induced oxidative stress. However, low bioavailability and photodegradation are the major concerns for the use of curcumin. In the present study, we have(More)
Broad spectrum therapeutic potential of curcumin is usually hampered by its photodegradation and low bioavailability. Present investigation was designed with an objective to develop transferrin-mediated solid lipid nanoparticles (TfC-SLN) resistant to the photostability and capable of enhancing the bioavailability by targeted drug delivery to elicit(More)
The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film within a rotatory evaporator. This thin film was hydrated with(More)
  • 1