Learn More
One of the most remarkable characteristics of astrocytes is their vigorous response to diverse neurologic insults, a feature that is well conserved across a variety of different species. The astroglial response occurs rapidly and can be detected within one hour of a focal mechanical trauma (Mucke et al., 1991). Prominent reactive astrogliosis is seen; in(More)
Spinal cord injury produced by mechanical contusion causes the onset of acute and chronic degradative events. These include blood brain barrier disruption, edema, demyelination, axonal damage and neuronal cell death. Posttraumatic inflammation after spinal cord injury has been implicated in the secondary injury that ultimately leads to neurologic(More)
It is now well established that the glial fibrillary acidic protein (GFAP) is the principal 8-9 nm intermediate filament in mature astrocytes of the central nervous system (CNS). Over a decade ago, the value of GFAP as a prototype antigen in nervous tissue identification and as a standard marker for fundamental and applied research at an interdisciplinary(More)
A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur(More)
Spinal cord injury within the first few hours, is complicated by inflammatory mechanisms, including the influx of monocyte/macrophages as well as the activation of resident spinal microglia and astrocytes. Numerous studies have suggested that the initial infiltration of the hematogenous cells may be due to the secretion of cytokines and chemokines in the(More)
Spinal cord injury is accompanied by an initial inflammatory reaction followed by secondary injury that is caused, in part, by apoptosis. Recruitment of leukocytes from the blood compartment to the site of inflammation in the injured spinal cord has been attributed to locally generated chemotactic agents (cytokines and chemokines). In addition to(More)
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) which has many clinical and pathological features in common with multiple sclerosis (MS). Comparison of the histopathology of EAE and MS reveals a close similarity suggesting that these two diseases share common pathogenetic mechanisms.(More)
Injury to the central nervous system (CNS) either from trauma or due to demyelinating/degenerating diseases results in a typical response of astrocytes, termed astrogliosis. This reaction is characterized by astrocyte proliferation, extensive hypertrophy of nuclei, cell body, and cytoplasmic processes and an increase in immunodetectable glial fibrillary(More)
A traumatic injury to the adult mammalian central nervous system (CNS) results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. Chemokines, a novel class of chemoattractant cytokines, are now being recognized as mediators of the inflammatory changes that occur following injury. The expression of MCP-1(More)