Learn More
This work presents a novel C(alpha)--C(alpha) distance dependent force field which is successful in selecting native structures from an ensemble of high resolution near-native conformers. An enhanced and diverse protein set, along with an improved decoy generation technique, contributes to the effectiveness of this potential. High quality decoys were(More)
Simplified force fields play an important role in protein structure prediction and de novo protein design by requiring less computational effort than detailed atomistic potentials. A side chain centroid based, distance dependent pairwise interaction potential has been developed. A linear programming based formulation was used in which non-native "decoy"(More)
An integer linear optimization model is presented to predict residue contacts in beta, alpha + beta, and alpha/beta proteins. The total energy of a protein is expressed as sum of a C(alpha)-C(alpha) distance dependent contact energy contribution and a hydrophobic contribution. The model selects contact that assign lowest energy to the protein structure as(More)
A new optimization-based method is presented to predict the hydrophobic residue contacts in alpha-helical proteins. The proposed approach uses a high resolution distance dependent force field to calculate the interaction energy between different residues of a protein. The formulation predicts the hydrophobic contacts by minimizing the sum of these contact(More)
Specific functional and pharmacological properties have recently been ascribed to G-protein-coupled receptor (GPCR) dimers/oligomers. Because the association of two identical or two distinct GPCR monomers seems to be required to elicit receptor function, it is necessary to understand the exact nature of this interaction. We present here a novel method for(More)
  • 1