R. Passaquieti

Learn More
The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)
interferometric gravitational wave detectors must be isolated from seismic noise. The VIRGO vibration isolator, called superattenuator, is fully effective at frequencies above 4 Hz. Nevertheless, the residual motion of the mirror at the mechanical resonant frequencies of the system are too large for the interferometer locking system and must be damped. A(More)
The gravitational wave detector Virgo is presently being commissioned. A significant part of last year was spent in setting up the cavity length control system. This work was carried out with steps of increasing complexity: locking a simple FabryPerot cavity, then a Michelson interferometer with Fabry-Perot cavities in both arms, and finally recycling the(More)
We describe a model evaluating changes in the optical isolation of a Faraday isolator when passing from air to vacuum in terms of different thermal effects in the crystal. The changes are particularly significant in the crystal thermal lensing (refraction index and thermal expansion) and in its Verdet constant and can be ascribed to the less efficient(More)
As they take data and improve their sensitivities, interferometric gravitational wave detectors will eventually detect signals emitted by inspiralling compact binary systems. Determining the sky position of the source will require that the signal be recorded in several detectors. The precision of the source direction determination will be driven by that of(More)
In this paper, we describe the analysis performed in the data of C6 and C7 commissioning runs of Virgo for the search of periodic sources of gravitational waves. The analysis is all-sky, covers the frequency range between 50 Hz and 1050 Hz and neutron star spin-down rate below 1.58 × 10−8 Hz s−1. Coincidences in the source parameter space between candidates(More)
The French-Italian interferometric gravitational wave detector VIRGO is currently being commissioned. Its principal instrument is a Michelson interferometer with 3 km long optical cavities in the arms and a powerrecycling mirror. This paper gives an overview of the present status of the system. We report on the presently attained sensitivity and the(More)
In-vacuum Faraday isolators (FIs) are used in gravitational wave interferometers to prevent the disturbance caused by light reflected back to the input port from the interferometer itself. The efficiency of the optical isolation is becoming more critical with the increase of laser input power. An in-vacuum FI, used in a gravitational wave experiment(More)