Learn More
Is discrimination of the envelope of an acoustic signal based on spectral or temporal computations? To investigate this question for the cricket Gryllus bimaculatus, pattern envelopes were constructed by the addition of several sine waves and modified by systematic phase changes. The phonotactic response of female crickets towards such sinusoidal but also(More)
The acoustic display of many cricket species consists of series of pulses grouped into chirps, and thus information is distributed over both short and long time scales. Here we investigated the temporal cues that females of the cricket Gryllus bimaculatus used to detect a chirp pattern on a longer time scale than the fast pulse pattern. First, over a range(More)
The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast(More)
We investigated the origin of spike frequency adaptation within a layered sensory network: the auditory pathway of locusts. Spike frequency adaptation as observed in an individual neuron may arise because of intrinsic or presynaptic adaptation mechanisms. To separate the contribution of different mechanisms, we recorded from the same cell during acoustic(More)
Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets—so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many(More)
Sensory pathways process behaviorally relevant signals in various contexts and therefore have to adapt to differing background conditions. Depending on changes in signal statistics, this adjustment might be a combination of two fundamental computational operations: subtractive adaptation shifting a neuron's threshold and divisive gain control scaling its(More)
Sensory systems adapt their neural code to changes in the sensory environment, often on multiple time scales. Here, we report a new form of adaptation in a first-order auditory interneuron (AN2) of crickets. We characterize the response of the AN2 neuron to amplitude-modulated sound stimuli and find that adaptation shifts the stimulus-response curves toward(More)
Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive(More)
The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day. However, adaptation(More)