Learn More
Ascending auditory interneurons of the cricket,Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit(More)
Is discrimination of the envelope of an acoustic signal based on spectral or temporal computations? To investigate this question for the cricket Gryllus bimaculatus, pattern envelopes were constructed by the addition of several sine waves and modified by systematic phase changes. The phonotactic response of female crickets towards such sinusoidal but also(More)
The acoustic display of many cricket species consists of series of pulses grouped into chirps, and thus information is distributed over both short and long time scales. Here we investigated the temporal cues that females of the cricket Gryllus bimaculatus used to detect a chirp pattern on a longer time scale than the fast pulse pattern. First, over a range(More)
A key problem for neuronal information processing is the variability of spike trains, something that is likely to constrain the encoding of sensory signals. We measured interspike-interval variability (coefficient of variation) as well as spike-count variability (Fano factor) in the metathoracic auditory system of locusts. We performed simultaneous(More)
Acoustic signals consist of pressure changes over time and can thus be analyzed in the frequency- or in the time-domain. With behavioural experiments we investigated which frequency components (FC) are necessary for the recognition of the periodic envelope of the conspecific song by females of the grasshopper Chorthippus biguttulus. Further, we determined(More)
  • R M Hennig
  • 2003
Common concepts of acoustic feature extraction within the auditory pathway of vertebrates and insects assume temporal filters tuned to particular periodicities. Crickets respond selectively to the conspecific song pattern and reveal a bandpass characteristic, which is thought to arise from a matched filter for a restricted range of periods. Unexpectedly,(More)
Insects exhibit an astonishing diversity in the design of their ears and the subsequent processing of information within their auditory pathways. The aim of this review is to summarize and compare the present concepts of auditory processing by relating behavioral performance to known neuronal mechanisms. We focus on three general aspects, that is frequency,(More)
The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast(More)
We investigated the origin of spike frequency adaptation within a layered sensory network: the auditory pathway of locusts. Spike frequency adaptation as observed in an individual neuron may arise because of intrinsic or presynaptic adaptation mechanisms. To separate the contribution of different mechanisms, we recorded from the same cell during acoustic(More)
The recognition of the temporal structure of sound patterns by grasshopper males was investigated in behavioural experiments. Males were tested with short (165-335 ms) song models in which the characteristic subunit pattern of syllables and pauses was modified either at the beginning or at the end of the stimuli. The highly specific responses of the animals(More)