R. Matthias Hennig

Learn More
Ascending auditory interneurons of the cricket,Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit(More)
Common concepts of acoustic feature extraction within the auditory pathway of vertebrates and insects assume temporal filters tuned to particular periodicities. Crickets respond selectively to the conspecific song pattern and reveal a bandpass characteristic, which is thought to arise from a matched filter for a restricted range of periods. Unexpectedly,(More)
A key problem for neuronal information processing is the variability of spike trains, something that is likely to constrain the encoding of sensory signals. We measured interspike-interval variability (coefficient of variation) as well as spike-count variability (Fano factor) in the metathoracic auditory system of locusts. We performed simultaneous(More)
Is discrimination of the envelope of an acoustic signal based on spectral or temporal computations? To investigate this question for the cricket Gryllus bimaculatus, pattern envelopes were constructed by the addition of several sine waves and modified by systematic phase changes. The phonotactic response of female crickets towards such sinusoidal but also(More)
The acoustic display of many cricket species consists of series of pulses grouped into chirps, and thus information is distributed over both short and long time scales. Here we investigated the temporal cues that females of the cricket Gryllus bimaculatus used to detect a chirp pattern on a longer time scale than the fast pulse pattern. First, over a range(More)
Acoustic signals consist of pressure changes over time and can thus be analyzed in the frequency- or in the time-domain. With behavioural experiments we investigated which frequency components (FC) are necessary for the recognition of the periodic envelope of the conspecific song by females of the grasshopper Chorthippus biguttulus. Further, we determined(More)
The phonotactic response of cricket females was investigated on a locomotion compensator to determine the temporal parameters of the male's calling song which are important for species recognition. Two sympatric species (Teleogryllus commodus, T. oceanicus) that show different syllable periods in the chirp and trill parts of their calling songs were used.(More)
Insects exhibit an astonishing diversity in the design of their ears and the subsequent processing of information within their auditory pathways. The aim of this review is to summarize and compare the present concepts of auditory processing by relating behavioral performance to known neuronal mechanisms. We focus on three general aspects, that is frequency,(More)
Divergence in mate recognition systems among closely related species is an important contributor to assortative mating and reproductive isolation. Here, we examine divergence in male song traits and female preference functions in three cricket species with songs consisting of long trills. The shape of female preference functions appears to be mostly(More)
The forewing of the cricket is activated during the performance of two different behaviours, flight and stridulation. Intracellular recording and staining techniques were employed to determine the neuronal basis for these two behaviours and how they are interrelated. Both motor patterns were studied in a deafferented preparation. Stridulation was elicited(More)