R. Matthew Hutchison

Learn More
Characterization of large-scale brain networks using blood-oxygenation-level-dependent functional magnetic resonance imaging is typically based on the assumption of network stationarity across the duration of scan. Recent studies in humans have questioned this assumption by showing that within-network functional connectivity fluctuates on the order of(More)
The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state(More)
The rodent brain is organized into functional networks that can be studied through examination of synchronized low-frequency spontaneous fluctuations (LFFs) of the functional magnetic resonance imaging -blood-oxygen-level-dependent (BOLD) signal. In this study, resting networks of LFFs were estimated from the whole-brain BOLD signals using independent(More)
Although the frontal eye field (FEF) has been identified in macaque monkeys and humans, practical constraints related to invasiveness and task demands have limited a direct cross-species comparison of its functional connectivity. In this study, we used resting-state functional MRI data collected from both awake humans and anesthetized macaque monkeys to(More)
Assessment of brain connectivity has revealed that the structure and dynamics of large-scale network organization are altered in multiple disease states suggesting their use as diagnostic or prognostic indicators. Further investigation into the underlying mechanisms, organization, and alteration of large-scale brain networks requires a homologous animal(More)
The transition from childhood to adulthood is marked by pronounced functional and structural brain transformations that impact cognition and behavior. Here, we use a functional imaging approach to reveal dynamic changes in coupling strength between networks and the expression of discrete brain configurations over human development during rest and a(More)
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field(More)
Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the(More)
OBJECTIVE To evaluate the possible role of the default mode network (DMN) in consciousness and assess the diagnostic or prognostic potential of DMN connectivity measures in the assessment of a patient group lacking cognitive awareness. METHODS DMN connectivity was established using independent component analysis of resting-state fMRI data in patients with(More)
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the(More)