Learn More
Disruption of the mouse dopamine transporter gene results in spontaneous hyperlocomotion despite major adaptive changes, such as decreases in neurotransmitter and receptor levels. In homozygote mice, dopamine persists at least 100 times longer in the extracellular space, explaining the biochemical basis of the hyperdopaminergic phenotype and demonstrating(More)
The dopamine transporter (DAT) plays an important role in calibrating the duration and intensity of dopamine neurotransmission in the central nervous system. We have used a strain of mice in which the gene for the DAT has been genetically deleted to identify the DAT's homeostatic role. We find that removal of the DAT dramatically prolongs the lifetime (300(More)
Amphetamine (AMPH) inhibits uptake and causes release of dopamine (DA) from presynaptic terminals. AMPH can act on both vesicular storage of DA and directly on the dopamine transporter (DAT). To assess the relative importance of these two processes, we have examined the releasing actions of AMPH in mice with a genetic deletion of the DAT. The sequence of(More)
Synaptic release of dopamine in the nucleus accumbens of the intact rat brain elicited by a single electrical impulse applied to ascending dopaminergic fibers results in extracellular concentrations sufficient to bind the known dopamine receptors. The dopamine concentration observed after four rapid, sequential pulses is exactly four times greater and is(More)
Advances in measurement techniques have enabled the extracellular concentration of dopamine to be monitored inside striatal structures during transient electrical stimulation of the medial forebrain bundle. The observed concentration changes can be accounted for by a mathematical model as a function of the frequency employed and the stimulus duration.(More)
Quantifying mechanisms underlying extracellular signaling by the neurotransmitter dopamine (DA) is a difficult task, particularly in the complex extracellular microenvironment of the intact brain. In this study, two methods for evaluating release and uptake from DA dynamics monitored by real-time voltammetry are described. Both are based on a neurochemical(More)
The dopamine-containing projection from the ventral tegmental area of the midbrain to the nucleus accumbens is critically involved in mediating the reinforcing properties of cocaine. Although neurons in this area respond to rewards on a subsecond timescale, neurochemical studies have only addressed the role of dopamine in drug addiction by examining changes(More)
The regulation of extracellular dopamine (DA) concentrations was examined and compared in vivo in four projection fields of mesotelencephalic dopaminergic neurons with fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Transient electrical stimulation of ascending DA fibers in a near physiological range of frequencies (10-20 Hz) elicited similar(More)
The rate of overflow and disappearance of dopamine from the extracellular fluid of the rat striatum has been measured during neuronal stimulation. Overflow of dopamine was induced by electrical stimulation of the medial forebrain bundle with biphasic pulse trains. The instantaneous concentration of dopamine was measured with a Nafion-coated, carbon fiber(More)
Regional differences in the kinetics and pharmacological inhibition of dopamine uptake were investigated with fast-scan cyclic voltammetry in both the intact rat brain and a brain slice preparation. The regions compared were the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens. The frequency dependence of dopamine efflux evoked in vivo(More)