Learn More
Retrieving images in response to textual queries requires some knowledge of the semantics of the picture. Here, we show how we can do both automatic image annotation and retrieval (using one word queries) from images and videos using a multiple Bernoulli relevance model. The model assumes that a training set of images or videos along with keyword(More)
Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based on content. Here, we propose an automatic approach to(More)
Libraries and other institutions are interested in providing access to scanned versions of their large collections of handwritten historical manuscripts on electronic media. Convenient access to a collection requires an index, which is manually created at great labour and expense. Since current handwriting recognizers do not perform well on historical(More)
Searching and indexing historical handwritten collections are a very challenging problem. We describe an approach called word spotting which involves grouping word images into clusters of similar words by using image matching to find similarity. By annotating “interesting” clusters, an index that links words to the locations where they occur can be built(More)
In this paper the score distributions of a number of text search engines are modeled. It is shown empirically that the score distributions on a per query basis may be fitted using an exponential distribution for the set of non-relevant documents and a normal distribution for the set of relevant documents. Experiments show that this model fits TREC-3 and(More)
ÐA robust system is proposed to automatically detect and extract text in images from different sources, including video, newspapers, advertisements, stock certificates, photographs, and checks. Text is first detected using multiscale texture segmentation and spatial cohesion constraints, then cleaned up and extracted using a histogram-based binarization(More)
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary(More)