Learn More
Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based on content. Here, we propose an automatic approach to(More)
Retrieving images in response to textual queries requires some knowledge of the semantics of the picture. Here, we show how we can do both automatic image annotation and retrieval (using one word queries) from images and videos using a multiple Bernoulli relevance model. The model assumes that a training set of images or videos along with keyword(More)
We propose an approach to learning the semantics of images which allows us to automatically annotate an image with keywords and to retrieve images based on text queries. We do this using a formalism that models the generation of annotated images. We assume that every image is divided into regions, each described by a continuous-valued feature vector. Given(More)
Searching and indexing historical handwritten collections are a very challenging problem. We describe an approach called word spotting which involves grouping word images into clusters of similar words by using image matching to find similarity. By annotating “interesting” clusters, an index that links words to the locations where they occur can be built(More)
In this paper the score distributions of a number of text search engines are modeled. It is shown empirically that the score distributions on a per query basis may be fitted using an exponential distribution for the set of non-relevant documents and a normal distribution for the set of relevant documents. Experiments show that this model fits TREC-3 and(More)
Most offline handwriting recognition approaches proceed by segmenting words into smaller pieces (usually characters) which are recognized separately. The recognition result of a word is then the composition of the individually recognized parts. Inspired by results in cognitive psychology, researchers have begun to focus on holistic word recognition(More)
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary(More)