R. M. Guignard

Learn More
We propose a modification of the conventional keratinocyte isolation method which has shown a significant improvement in the purity, colony forming efficiency (c.f.e.) and growth capacity of the isolated epidermal cell population. This method utilized thermolysin since it selectively digests the dermo-epidermal junction. Following separation from the(More)
The aim of the present study was to produce a reconstructed human cornea in vitro by tissue engineering and to characterize the expression of integrins and basement membrane proteins in this reconstructed cornea. Epithelial cells and fibroblasts were isolated from human corneas (limbus or centre) and cultured on plastic substrates in vitro. Reconstructed(More)
Several studies have recently been conducted on cultured skin equivalent (SE), prepared using human keratinocytes seeded on various types of dermal equivalents (DE). We previously showed the advantages of our anchorage method in preventing the severe surface reduction of DE due to fibroblast contractile properties in vitro. A new anchored human SE was(More)
Collagens XII and XIV localize near the surface of collagen fibrils and may be involved in epithelial-mesenchymal interactions as well as in the modulation of tissue biomechanical properties. Moreover, human skin fibroblasts cultured in monolayer are known to lose their ability to produce collagen XIV and to switch the transcription of collagen XII from the(More)
The Merkel cell is a highly specialized cell that primarily acts as a slowly adapting mechanoreceptor. Merkel cells are scarce in normal skin but can be identified by the expression of distinct keratin filaments. Merkel cells constitute a very unique population and many questions still remain as to their origin, number, proliferative capacity, and functions(More)
There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient's own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to(More)
The epithelial cells and Wharton׳s jelly cells (WJC) from the human umbilical cord have yet to be extensively studied in respect to their capacity to generate tissue-engineered substitutes for clinical applications. Our reconstruction strategy, based on the self-assembly approach of tissue engineering, allows the production of various types of living human(More)
The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any(More)
The structural stability of skin substitutes is critical to avoid aesthetic and functional problems after grafting, such as contractures and hypertrophic scars. The present study was designed to assess the production steps having an influence on the contractile behaviour of the tissue-engineered skin made by the self-assembly approach, where keratinocytes(More)
Leucine-zipper protein kinase/dual leucine zipper bearing kinase/mitogen-activated protein kinase-upstream kinase is a recently described protein serine/threonine kinase which belongs to the mixed lineage kinase family. The overall pattern of expression of the leucine-zipper protein kinase/dual leucine zipper bearing kinase/mitogen-activated protein(More)