Learn More
Despite increasing knowledge about dimerization of G-protein-coupled receptors, nothing is known about dimerization in the largest subfamily, odorant receptors. Using a combination of biochemical and electrophysiological approaches, we demonstrate here that odorant receptors can dimerize. DOR83b, an odorant receptor that is ubiquitously expressed in(More)
In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid 'non-genomic' activation of protein kinases and(More)
Ninety-three cadaveric proximal humeri and matching scapulae with no evidence of shoulder disease were obtained. High-resolution roentgenograms were made. They were the digitized, and a custom computer program was used to obtain periosteal and endosteal dimensions (humeral canal width, shaft width, tuberosity offset, head offset, radius of curvature, head(More)
The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in(More)
BACKGROUND Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory(More)
The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular(More)
Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized(More)
Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1/2) mitogen activated protein (MAP) kinase signalling in the(More)
Aldosterone regulates Na(+) transport in the distal nephron through multiple mechanisms that include the transcriptional control of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase subunits. Aldosterone also induces the rapid phosphorylation of Protein Kinase D1 (PKD1). PKD isoforms regulate protein trafficking, by the control of vesicle fission from(More)