Learn More
Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The(More)
Protein serine/threonine phosphatase 2A (PP2A) regulates a wide variety of cellular signal transduction pathways. The predominant form of PP2A in cells is a heterotrimeric holoenzyme consisting of a scaffolding (A) subunit, a regulatory (B) subunit, and a catalytic (C) subunit. Although PP2A is known to regulate Raf1-MEK1/2-ERK1/2 signaling at multiple(More)
Aminoglycosides have been shown to target A-form nucleic acids. Our work has previously shown that neomycin (and other aminoglycosides) bind and stabilize DNA/RNA triplexes and other A-form nucleic acids. We report herein the unexpected B-form duplex stabilization shown by aminoglycoside dimers (neomycin-neomycin and neomycin-tobramycin). The dimers are(More)
A growing body of evidence indicates that regulation of protein-serine/threonine phosphatase 2A (PP2A) involves its association with other cellular and viral proteins in multiprotein complexes. PP2A-containing protein complexes may exist that contribute to PP2A's important regulatory role in many cellular processes. To identify such protein complexes, PP2A(More)
Neomycin is the most effective aminoglycoside (groove binder) in stabilizing a DNA triple helix. It stabilizes TAT, as well as mixed base DNA triplexes, better than known DNA minor groove binders (which usually destabilize the triplex) and polyamines. Neomycin selectively stabilizes the triplex (in the presence of salt), without any effect on the DNA(More)
The stabilization of the poly(dA) x 2poly(dT) triple helix by neomycin is reported. Preliminary results indicate that neomycin stabilizes DNA triple helices and the double helical structures composed of poly(dA) x poly(dT) are virtually unaffected. This is the first report of the interaction of aminoglycoside antibiotics with DNA triple helices.
Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To(More)
The stabilization of poly(dA).2poly(dT) triplex, a 22-base DNA triplex, and poly(rA).2poly(rU) triple helix by neomycin is reported. The melting temperatures, the association and dissociation kinetic parameters, and activation energies (E(on) and E(off)) for the poly(dA).2poly(dT) triplex in the presence of aminoglycosides and other triplex binding ligands(More)
Use of a particle beam glow discharge (PB-GD) source for mass spectrometric determinations of deoxy- and ribonucleosides and nucleotides is described. Use of this combination of sample introduction and ion source decouples the vaporization and ionization steps, leading to very simple spectral structure. The mass spectra of these compounds are EI-like in(More)
  • 1