R Krishna Kumar

  • Citations Per Year
Learn More
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here(More)
Hybrid supramolecular hydrogels are prepared by non-enzymatic dephosphorylation of N-fluorenylmethyloxycarbonyl tyrosine-(O)-phosphate (FMOC-Tyr-P) using catalytic cerium oxide nanoparticles. The organic-inorganic hydrogels exhibit enhanced viscoelastic properties compared with analogous materials prepared using alkaline phosphatase.
Cyclotron motion of charge carriers in metals and semiconductors leads to Landau quantization and magneto-oscillatory behavior in their properties. Cryogenic temperatures are usually required to observe these oscillations. We show that graphene superlattices support a different type of quantum oscillation that does not rely on Landau quantization. The(More)
  • 1