Learn More
Extensive lithium wall coatings and liquid lithium plasma-limiting surfaces reduce recycling, with dramatic improvements in Ohmic plasma discharges in the Current Drive Experiment-Upgrade. Global energy confinement times increase by up to 6 times. These results exceed confinement scalings such as ITER98P(y,1) by 2-3 times, and represent the largest increase(More)
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface.(More)
The frequency-modulated continuous-wave reflectometer on LTX (Lithium Tokamak Experiment) and the data analysis methods used for determining electron density profiles are described. The diagnostic uses a frequency range of 13.1-33.5 GHz, for covering a density range of 0.21-1.4×1013 cm-3 (in O-mode polarization) with a time resolution down to 8 μs. The(More)
The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and(More)
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (>200  eV) and flat electron temperature profiles have been measured(More)
A two-dimensional ion velocity measurement system is being developed under a US-JAPAN collaborative activity. The diagnostic is used to determine Doppler shifts from the intensity ratio of a visible line from the same light source, measured with two interference filters that have different transmission pass bands. A fast visible camera is used as(More)
An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various(More)
A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as(More)
The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design(More)