R. Jayavel

  • Citations Per Year
Learn More
A simple and efficient solution mixing method has been developed for the synthesis of the G-V2O5 nanocomposite. By this method, one-dimensional V2O5 rods are decorated onto the two-dimensional graphene sheets. The synthesized nanocomposites are characterized by XRD, SEM with elemental mapping, TEM, FT-IR, Raman, BET, and XPS analyses. The photocatalytic(More)
Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The(More)
The present study focused on the finding of reducing agents for the formation of silver nanoparticles (AgNPs) from the plant, Trichosanthes tricuspidata. The synthesized AgNPs were characterized using UV-Visible spectroscopy, particle size analyzer (PSA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses.(More)
The two-dimensional (2D) transition metal dichalcogenide nanosheet-carbon composite is an attractive material for energy storage because of its high Faradaic activity, unique nanoconstruction and electronic properties. In this work, a facile one step preparation of a molybdenum disulfide (MoS2) nanosheet-graphene (MoS2/G) composite with the in situ(More)
This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen(More)
Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and(More)
The solar-to-hydrogen generation from the TiO2-CdS-ZnS-MoS2 (TCZM) heterointerface was demonstrated. We found that a Pt-free CdS quantum dot-sensitized TiO2 mesoporous electrode with a metallic-type 1T MoS2 co-catalyst resulted in 0.11 ml cm(-2) h(-1) H2 fuel generation in unassisted potential mode, which was strikingly improved to 1.47 ml cm(-2) h(-1)(More)
We report on the growth of a different orientation plane of Ni3TeO6 single crystal by the flux growth method for the first time. X-ray diffraction is used to characterize the single crystal and it crystallizes into the trigonal structure having space group R3 with lattice parameters of a = 5.1087 Å and c = 13.767 Å. The earlier studies reported that the(More)
Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline(More)
Hybrid solar cells employing conjugated polymers have revolutionized the photovoltaic industry by offering the prospect for large-scale energy conversion applications through cost-effective fabrication techniques. In this regard, we have demonstrated an experimental approach to fabricate polypyrrole/ZnCoO nanorod hybrid systems, using hydrothermal and(More)