R. Janel-Bintz

Learn More
Most organisms contain several members of a recently discovered class of DNA polymerases (umuC/dinB superfamily) potentially involved in replication of damaged DNA. In Escherichia coli, only Pol V (umuDC) was known to be essential for base substitution mutagenesis induced by UV light or abasic sites. Here we show that, depending upon the nature of the DNA(More)
Replication through a single DNA lesion may give rise to a panel of translesion synthesis (TLS) events, which comprise error-free TLS, base substitutions and frameshift mutations. In order to determine the genetic control of the various TLS events induced by a single lesion, we have chosen the major N2-dG adduct of (+)-anti-Benzo(a)pyrene diol epoxide(More)
The NarI sequence represents a strong mutation hot spot for -2 frameshift mutations induced by N-2-acetylaminofluorene (AAF), a strong chemical carcinogen. Only when bound to the third (underlined) guanine (5'-GGCGCC-->GGCC) can AAF trigger frameshift mutations, suggesting the involvement of a slipped replication intermediate with a two-nucleotide bulge.(More)
Previous studies on structure-activity relationships (SARs) between types of DNA modifications and tumour incidence revealed linear positive relationships between the log TD50 estimates and s-values for a series of mostly monofunctional alkylating agents. The overall objective of this STEP project was to further elucidate the mechanistic principles(More)
N-2-acetylaminofluorene has been shown efficiently to induce both −1 and −2 frameshift mutations in Escherichia coli as well as in mammalian cells. In E. coli, the genetic characteristics of −1 and −2 frameshift mutations were found to be distinct. The −1 frameshift mutation pathway occurs at monotonous runs of G residues (i.e. GGG→GG). This pathway(More)
The potency of 2-amino-3-methylimidazo(4, 5-f)quinoline (IQ) adducts to induce −2, −1 and +1 frameshift mutations has been determined on specific target DNA sequences, namely short runs of alternating GpC sequences and short runs of guanines. The genetic control of the mutational processes has been analyzed using different Escherichia coli mutants, affected(More)
The mutagenicity of 2-nitrofluorene (NF), N-hydroxyacetylaminofluorene (N-OH-AAF), and N-2-acetylaminofluorene (AAF) was measured in strains of Escherichia coli that contain a lacZ allele that reverts by -2 frameshift mutations from CG(5) to CG(4). Mutagenesis was compared in a strain having wild-type permeability and metabolism, a strain with increased(More)
The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) induces frameshift mutations located within two types of specific sequences (mutation hot spots): i) contiguous guanine sequences and ii) alternating GC sequences. The genetic requirements of these frameshift events were investigated using specific reversion assays. AAF-induced -2(More)
  • 1