Learn More
Xyloglucan-specific endo-β-1,4-glucanases (Xegs, EC exhibit high catalytic specificity for β-1,4 linkages of xyloglucan, a branched hemicellulosic polysaccharide abundant in dicot primary cell walls and present in many monocot species. In nature, GH12 Xegs are not associated with carbohydrate-binding modules (CBMs), and here, we have investigated(More)
Lipases (EC comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification.(More)
BACKGROUND The search for novel thermostable xylanases for industrial use has intensified in recent years, and thermophilic fungi are a promising source of useful enzymes. The present work reports the heterologous expression and biochemical characterization of a novel thermostable xylanase (GH10) from the thermophilic fungus Malbranchea pulchella, the(More)
BACKGROUND Product inhibition can reduce catalytic performance of enzymes used for biofuel production. Different mechanisms can cause this inhibition and, in most cases, the use of classical enzymology approach is not sufficient to overcome this problem. Here we have used a semi-rational protein fusion strategy to create a product-stimulated enzyme. (More)
BACKGROUND Bothropstoxin-I (BthTx-I) is a Lys49-phospholipase A2 (Lys49-PLA2) from the venom of Bothrops jararacussu, which despite of the lack of catalytic activity induces myotoxicity, inflammation and pain. The C-terminal region of the Lys49-PLA2s is important for these effects; however, the amino acid residues that determine hyperalgesia and edema are(More)
BACKGROUND Saccharification of lignocellulosic material by xylanases and other glycoside hydrolases is generally conducted at high concentrations of the final reaction products, which frequently inhibit the enzymes used in the saccharification process. Using a random nonhomologous recombination strategy, we have fused the GH11 xylanase from Bacillus(More)
The use of endo-arabinanase from Bacillus licheniformis (ABNase) for sugarcane saccharification has been evaluated by enzyme immobilization and commercial cocktail supplement with the immobilized heterologous protein. Biochemical characterization of the purified ABNase showed that the catalytic activity was strongly inhibited by 5 mM Cu2+, Zn2+ or Fe3+. The(More)
  • 1