Learn More
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration(More)
Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration(More)
Predictions of future ecosystem function and food supply from staple C(4) crops, such as maize, depend on elucidation of the mechanisms by which environmental change and growing conditions interact to determine future plant performance. To test the interactive effects of elevated [CO(2)], drought, and nitrogen (N) supply on net photosynthetic CO(2) uptake(More)
Plant respiration responses to elevated growth [CO(2)] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO(2)] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole plant photoassimilate availability and growth, elevated(More)
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final(More)
Methamphetamine (MA) appears to produce neurotoxic effects, in part, through disruptions of energy metabolism. A recent study of the whole-body proteome of Drosophila melanogaster showed many changes in energy metabolism-related proteins, leading us to hypothesize that MA toxicity may cause whole-body disruptions of energy metabolism. To test this, we(More)
Brassica rapa is a model species for agronomic, ecological, evolutionary and translational studies. Here we describe high-density SNP discovery and genetic map construction for a Brassica rapa recombinant inbred line (RIL) population derived from field collected RNA-seq data. This high-density genotype data enables the detection and correction of putative(More)
Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals.(More)