R. J. Cody Markelz

Learn More
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration(More)
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final(More)
Predictions of future ecosystem function and food supply from staple C(4) crops, such as maize, depend on elucidation of the mechanisms by which environmental change and growing conditions interact to determine future plant performance. To test the interactive effects of elevated [CO(2)], drought, and nitrogen (N) supply on net photosynthetic CO(2) uptake(More)
Methamphetamine (MA) appears to produce neurotoxic effects, in part, through disruptions of energy metabolism. A recent study of the whole-body proteome of Drosophila melanogaster showed many changes in energy metabolism-related proteins, leading us to hypothesize that MA toxicity may cause whole-body disruptions of energy metabolism. To test this, we(More)
Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals.(More)
Conventional phenotyping methods impose a significant bottleneck to the characterization of genotypic and environmental effects on trait expression in plants. In particular, invasive and destructive sampling methods along with manual measurements widely used in conventional studies are labor-intensive, time-consuming, costly, and can lack consistency. These(More)
Plant respiration responses to elevated growth [CO(2)] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO(2)] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole plant photoassimilate availability and growth, elevated(More)
The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology,(More)
Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration(More)