Learn More
Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand(More)
This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a(More)
To understand the molecular mechanisms responsible for generating physiologically diverse potassium channels in mammalian cells, mouse genomic clones have been isolated with a potassium channel complementary DNA, MBK1, that is homologous to the Drosophila potassium channel gene, Shaker. A family of three closely related potassium channel genes (MK1, MK2,(More)
Leukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors(More)
The structures of an increasing number of channels and other alpha-helical membrane proteins have been determined recently, including the KcsA potassium channel, the MscL mechanosensitive channel, and the AQP1 and GlpF members of the aquaporin family. In this chapter, the orientation and packing characteristics of bilayer-spanning helices are surveyed in(More)
The synthesis, structure-activity relationship (SAR), and pharmacological evaluation of analogs of the acid-sensing ion channel (ASIC) inhibitor A-317567 are reported. It was found that the compound with an acetylenic linkage was the most potent ASIC-3 channel blocker. This compound reversed mechanical hypersensitivity in the rat iodoacetate model of(More)
  • 1