R H Adrian

Learn More
1. The transient current required to impose a step charge of potential has a complex time course especially in the region of internal potential between -50 and -40 mV. 2. Examination of non-linear transient current in this voltage range suggests two components of charge movement: (a) an initial more-or-less exponential movement, and (b) a slower component(More)
1. Membrane capacity of sartorius muscle fibres has been measured at membrane potentials between -200 and +50 mV. Within this potential range the capacity is not independent of potential. Dielectric saturation is present at large negative and at positive internal potentials, indicating the presence in the membrane of permanent dipoles or movable charges. 2.(More)
1. Muscle fibres from goats with myotonia congenita show characteristic responses to stimulation with intracellular currents (Adrian & Bryant, 1974). To test whether the reduced surface chloride conductance can account for these myotonic discharges, we have calculated responses of a model 'muscle fibre' to intracellular current of long duration (greater(More)
1. Intramembrane charge movement has been measured in striated muscle subjected to prolonged depolarization but repolarized to -100 mV for up to 100 sec. The method of measurement allows identification of charge or charges which are 'reprimed' by repolarization. 2. Charge 'reprimed' by repolarization appears to differ in its voltage distribution from charge(More)
1. Muscles were placed in a solution which depolarized the membrane to -30 to -20 mV so that mechanical activation was made refractory. Mechanical repriming and the recovery of voltage dependent charge movement were studied using a voltage clamp technique. 2. Mechanical repriming was investigated by determining the duration of a hyperpolarizing pulse(More)
Experiments were performed to ascertain whether the monotonic (q beta) and delayed (q gamma) components of non-linear charge in skeletal muscle membranes form a sequential system, or are the result of separate, independent processes. The non-linear capacitance studied in a large number of fibres increased with fibre diameter. This dependence was(More)
Charge movement was investigated over a range of potentials close to the mechanical threshold in voltage-clamped frog skeletal muscle. The delayed (q gamma) component of the charging currents appeared with a time course lasting well over 100 ms at around -50 to -40 mV, but the currents became larger and faster with further depolarization. The slow charging(More)