Learn More
Crick and Mitchison have presented a hypothesis for the functional role of dream sleep involving an 'unlearning' process. We have independently carried out mathematical and computer modelling of learning and 'unlearning' in a collective neural network of 30-1,000 neurones. The model network has a content-addressable memory or 'associative memory' which(More)
Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline. Because insect pollinators preferentially utilize proline during the(More)
Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full(More)
Mutability of the w(4) flower color locus in soybean [Glycine max (L.) Merr.] is conditioned by an unstable allele designated w(4)-m. Germinal revertants, purple-flower plants, recovered among self-pollinated progeny of mutable flower plants were associated with the generation of necrotic root, chlorophyll-deficiency, and sterility mutations. Thirty-seven(More)
Active endogenous transposable elements, useful tools for gene isolation, have not been reported from any legume species. An active transposable element was suggested to reside in the W4 locus that governs flower color in soybean. Through biochemical and molecular analyses of several revertants of the w4-m allele, we have shown that the W4 locus encodes(More)
Relationships among the various diploid and polyploid taxa that comprise Glycine tomentella have been hypothesized from crossing studies, isozyme data, and repeat length variation for the 5S nuclear ribosomal gene loci. However, several key questions have persisted, and detailed phylogenetic evidence from homoeologous nuclear genes has been lacking. The(More)
Soybean exhibits natural variation in flower and seed coat colors via the deposition of various anthocyanin pigments in the respective tissues. Although pigmentation in seeds or flowers has been well dissected at molecular level in several plant species, the genes controlling natural variation in anthocyanin traits in the soybean are not completely(More)
Mutability of the w4 flower color locus in soybean, Glycine max (L.) Merr., is conditioned by an allele designated w4-m. Germinal revertants recovered among self-pollinated progeny of mutable plants have been associated with the generation of necrotic root mutations, chlorophyll-deficiency mutations, and sterility mutations. A total of 24 necrotic root(More)
Plants of the "w4-mutable" line of soybean [Glycine max (L.) Merr.] are chimeral for anthocyanin pigmentation. Mutable plants produce both near-white and purple flowers, as well as flowers of mutable phenotype with purple sectors on near-white petals. It is established here that the mutable trait is conditioned by an unstable recessive allele of the w4(More)
The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was(More)