Learn More
Since most archaea are extremophilic and difficult to cultivate, our current knowledge of their biology is confined largely to comparative genomics and biochemistry. Haloferax volcanii offers great promise as a model organism for archaeal genetics, but until now there has been a lack of a wide variety of selectable markers for this organism. We describe(More)
The RuvAB, RuvC and RecG proteins of Escherichia coli process intermediates in recombination and DNA repair into mature products. RuvAB and RecG catalyse branch migration of Holliday junctions, while RuvC resolves these structures by nuclease cleavage around the point of strand exchange. The overlap between RuvAB and RecG was investigated using synthetic X-(More)
Chromosome duplication normally initiates through the assembly of replication fork complexes at defined origins. DNA synthesis by any one fork is thought to cease when it meets another travelling in the opposite direction, at which stage the replication machinery may simply dissociate before the nascent strands are finally ligated. But what actually happens(More)
We have discovered a correlation between the ability of Escherichia coli cells to survive damage to DNA and their ability to modulate RNA polymerase via the stringent response regulators, (p)ppGpp. Elevation of (p)ppGpp, or certain mutations in the beta subunit of RNA polymerase, dramatically improve survival of UV-irradiated strains lacking the RuvABC(More)
The Escherichia coli DNA binding protein RuvA acts in concert with the helicase RuvB to drive branch migration of Holliday intermediates during recombination and DNA repair. The atomic structure of RuvA was determined at a resolution of 1.9 angstroms. Four monomers of RuvA are related by fourfold symmetry in a manner reminiscent of a four-petaled flower.(More)
The RecG protein of E. coli is a junction-specific DNA helicase involved in recombination and DNA repair. The function of the protein was investigated using an in vitro recombination reaction catalyzed by RecA. We show that RecG counters RecA-driven strand exchange by catalyzing branch migration of the Holliday junction in the reverse direction. This(More)
Duplication and transmission of chromosomes require precise control of chromosome replication and segregation. Here we present evidence that RecG is a major factor influencing these processes in bacteria. We show that the extensive DnaA-independent stable DNA replication observed without RecG can lead to replication of any area of the chromosome. This(More)
We report the discovery of a novel group of highly conserved DNA sequences located within the intergenic regions of the chromosomes of Escherichia coli, Salmonella typhimurium and other bacteria. These intergenic repeat units (IRUs) are 124-127 nucleotides long and have the potential to form stable stem-loop structures. The location of these sequences(More)
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation,(More)
RecG differs from most helicases acting on branched DNA in that it is thought to catalyze unwinding via translocation of a monomer on dsDNA, with a wedge domain facilitating strand separation. Conserved phenylalanines in the wedge are shown to be critical for DNA binding. When detached from the helicase domains, the wedge bound a Holliday junction with high(More)