Learn More
Since most archaea are extremophilic and difficult to cultivate, our current knowledge of their biology is confined largely to comparative genomics and biochemistry. Haloferax volcanii offers great promise as a model organism for archaeal genetics, but until now there has been a lack of a wide variety of selectable markers for this organism. We describe(More)
ruvC mutants of Escherichia coli appear to lack an activity that resolves Holliday intermediates into recombinant products. Yet, these strains produce close to normal numbers of recombinants in genetic crosses. This recombination proficiency was found to be a function of recG. A "mini-kan" insertion in recG was introduced into ruvA, ruvB, and ruvC strains.(More)
The PriA protein of Escherichia coli provides a vital link between recombination and DNA replication. To establish the molecular basis for this link, we investigated the ability of PriA to target DNA substrates modelled on D-loops, the intermediates formed during the early stages of RecA-mediated recombination. We show that PriA binds D-loops and unwinds(More)
We have discovered a correlation between the ability of Escherichia coli cells to survive damage to DNA and their ability to modulate RNA polymerase via the stringent response regulators, (p)ppGpp. Elevation of (p)ppGpp, or certain mutations in the beta subunit of RNA polymerase, dramatically improve survival of UV-irradiated strains lacking the RuvABC(More)
Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a(More)
The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to(More)
The ruvA, ruvB, and ruvC genes of Escherichia coli provide activities that catalyze branch migration and resolution of Holliday junction intermediates in recombination. Mutation of any one of these genes interferes with recombination and reduces the ability of the cell to repair damage to DNA. A suppressor of ruv mutations was identified on the basis of its(More)
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation,(More)
Double-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair(More)
The RusA protein of Escherichia coli is an endonuclease that can resolve Holliday intermediates and correct the defects in genetic recombination and DNA repair associated with inactivation of RuvAB or RuvC. The structure of the rusA gene, its organisation in the genome, and its interaction with the Ruv and RecG proteins have been investigated. Recombinant(More)