Learn More
After vacuolar perfusion of Chara internode cells, the cytoplasm remaining in situ can be reactivated by ATP to give full rates of streaming. Observations during both perfusion and reactivation indicated that the generation of the motive force was associated with fibres consisting of bundles of microfilaments. In the absence of ATP, the remaining(More)
As auditory genes and deafness-associated mutations are discovered at a rapid rate, exciting opportunities have arisen to uncover the molecular mechanisms underlying hearing and hearing impairment. Single genes have been identified to be pathogenic for dominant or recessive forms of nonsyndromic hearing loss, syndromic hearing loss, and, in some cases, even(More)
The effect of angiotensin II on the cytosolic free Ca2+ concentration was measured in single mouse neuroblastoma N1E-115 cells loaded with fura-2. Angiotensin II induced a transient concentration-dependent increase in Ca2+ and also increased the production of inositol polyphosphates. The Ca2+ increase did not require extracellular Ca2+ and was unaffected by(More)
Developmental changes in the pharmacological properties of the GABAA receptor have been suggested to result from changes in the subunit composition of the receptor complex. The nicotinic acetylcholine receptor is structurally related to the GABAA receptor and undergoes a developmental subunit switch at the neuromuscular synapse. To examine the mechanistic(More)
The properties of the sub-cortical actin bundles in the perfused Chara cell model are altered by concentrations of cytochalasin B (CB) which inhibit streaming. This is demonstrated by treating the bundles with intracellularly introduced CB after first using ATP to strip away their associated motile organelles. Such CB-treated bundles are resistant to a(More)
Strong irradiation of localized areas of the alga Chara produces chloroplast damage and extensive loss of the actin bundles responsible for cytoplasmic streaming. Immunofluorescence using a monoclonal antibody binding to the actin bundles has been used to follow their regrowth. Bundle regeneration is polarized so that new bundles develop from the ends of(More)
  • 1