Learn More
We prove that every Ariki–Koike algebra is Morita equivalent to a direct sum of tensor products of smaller Ariki–Koike algebras which have q–connected parameter sets. A similar result is proved for the cyclotomic q–Schur algebras. Combining our results with work of Ariki and Uglov, the decomposition numbers for the Ariki–Koike algebras defined over fields(More)
We extend the family of classical Schur algebras in type A, which determine the polynomial representation theory of general linear groups over an infinite field, to a larger family, the rational Schur algebras, which determine the rational representation theory of general linear groups over an infinite field. This makes it possible to study the rational(More)
In this paper we prove the Schur-Weyl duality between the symplectic group and the Brauer algebra over an arbitrary infinite field K. We show that the natural homomorphism from the Brauer algebra Bn(−2m) to the endomorphism algebra of the tensor space (K2m)⊗n as a module over the symplectic similitude group GSp2m(K) (or equivalently, as a module over the(More)
The irreducible complex representations of nite groups of Lie type are divided into series by means of the Harish-Chandra philosophy, whose starting point is the concept of cuspidal characters (see e.g..Sr]). The classiication of the irreducible characters of such a group G can be done in two steps: First nd all cuspidal irreducible characters of Levi(More)
Let G be a nite group of Lie type deened over some nite eld GF(q). Let k be a eld of positive characteristic p not dividing q. Hecke functors tie together the representation theory of kG and that of Hecke algebras associated with nite reeection groups. In DDu1] the theory of vertices and sources for such algebras was introduced in the case of Hecke algebras(More)