Learn More
Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds(More)
The Fragile X protein FMRP is an RNA binding protein whose targets are not well known; yet, these RNAs may play an integral role in the disease's etiology. Using a biotinylated-FMRP affinity resin, we isolated RNAs from the parietal cortex of a normal adult that bound FMRP. These RNAs were amplified by differential display (DDRT-PCR) and cloned and their(More)
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation(More)
The fragile X mental retardation protein (FMRP) contains three RNA binding domains, two of which the KH2 domain and the C-terminal arginine-glycine-rich (RG-rich) region participate in RNA binding. Because fragile X syndrome is the leading cause of inherited mental retardation, there has been an intensive search for the messenger RNA (mRNA) targets that(More)
We recently identified several ESTs that bind to the fragile X mental retardation protein (FMRP) in vitro. To determine whether they interacted in vivo we performed three-hybrid screens in a Saccharomyces cerevisiae histidine auxotroph. We demonstrate that two of the ESTs support growth on histidine and transduce beta-galactosidase activity when(More)
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating(More)
Differential display was used to identify synapse-enriched mRNAs. Of 15 mRNAs initially identified, all were found in multiple synaptoneurosome preparations; 58% were subsequently shown to be enriched in all the preparations by Northern blotting and semiquantitative RT-PCR. RNAs involved in signal transduction, vesicle trafficking, lipid modification and(More)
Exon 15 of the fragile X mental retardation protein gene (FMR1) is alternatively spliced into three variants. The amino acids encoded by the 5' end of the exon contain several regulatory determinants including phosphorylation sites and a potential conformational switch. Residues encoded by the 3' end of the exon specify FMRP's RGG box, an RNA binding domain(More)