R. Chowdhury

Learn More
Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using(More)
Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by(More)
Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean(More)
BACKGROUND Electrogram fractionation and atrial fibrosis are both thought to be pathophysiological hallmarks of evolving persistence of atrial fibrillation (AF), but recent studies in humans have shown that they do not colocalize. The interrelationship and relative roles of fractionation and fibrotic change in AF persistence therefore remain unclear. (More)
The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges(More)
The HL-1 atrial line contains cells blocked at various developmental stages. To obtain homogeneous sub-clones and correlate changes in gene expression with functional alterations, individual clones were obtained and characterised for parameters involved in conduction and excitation-contraction coupling. Northern blots for mRNAs coding for connexins 40, 43(More)
Despite the constant improvement of algorithms for automated brain tissue classification, the accurate delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI data and from the lack of adequate priors(More)
INTRODUCTION Surgical treatment of drug-resistant epilepsy relies on the identification of the seizure onset zone (SOZ) and often requires intracranial EEG (iEEG). We have developed a new approach for non-invasive magnetic and electric source imaging of the SOZ (MSI-SOZ and ESI-SOZ) from ictal magnetoencephalography (MEG) and EEG recordings, using(More)
OBJECTIVES The purpose of this study was to investigate the effects of enhancing gap junction (GJ) coupling during acute myocardial infarction (MI) on the healed infarct scar morphology and late post-MI arrhythmia susceptibility. BACKGROUND Increased heterogeneity of myocardial scarring after MI is associated with greater arrhythmia susceptibility. We(More)
  • 1