Learn More
The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical and microwave cavities is of growing interest. Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre- or micrometre-scale(More)
Periodicity in materials yields interesting and useful phenomena. Applied to the propagation of light, periodicity gives rise to photonic crystals, which can be precisely engineered for such applications as guiding and dispersing optical beams, tightly confining and trapping light resonantly, and enhancing nonlinear optical interactions. Photonic crystals(More)
Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)).(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Stimulated Brillouin scattering (SBS) is traditionally viewed as a process(More)
The combination of the large per-photon optical force and small motional mass achievable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this Article, we study the optical control of mechanical motion within two different nanocavity structures, a zipper nanobeam photonic(More)
Optical forces in guided-wave nanostructures have recently been proposed as an effective means of mechanically actuating and tuning optical components. In this work, we study the properties of a photonic crystal optomechanical cavity consisting of a pair of patterned Si3N4 nanobeams. Internal stresses in the stoichiometric Si3N4 thin-film are used to(More)
A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The(More)
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic(More)
These set of notes describe cavity optomechanics in the presence of additional thermo-optic tuning of the cavity resonance. We find that thermo-optic tuning results in correction factors to both the optical spring and optomechanical gain. In addition there is an overall saturation of the optomechanical coupling. These effects can be large for systems with(More)
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the quantum Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than(More)