R Bruce Weisman

Learn More
Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst.(More)
The uptake of pristine single-walled carbon nanotubes into macrophage-like cells has been studied using the nanotubes' intrinsic near-infrared fluorescence. Macrophage samples that have been incubated in growth media containing suspended single-walled nanotubes show characteristic nanotube fluorescence spectra. The fluorescence intensities increase smoothly(More)
Spectrofluorimetric measurements on single-walled carbon nanotubes (SWNTs) isolated in aqueous surfactant suspensions have revealed distinct electronic absorption and emission transitions for more than 30 different semiconducting nanotube species. By combining these fluorimetric results with resonance Raman data, each optical transition has been mapped to a(More)
Individualized, chemically pristine single-walled carbon nanotubes have been intravenously administered to rabbits and monitored through their characteristic near-infrared fluorescence. Spectra indicated that blood proteins displaced the nanotube coating of synthetic surfactant molecules within seconds. The nanotube concentration in the blood serum(More)
BACKGROUND Single-walled carbon nanotubes (SWNTs) have remarkable physicochemical properties that may have several medical applications. The authors have discovered a novel property of SWNTs-heat release in a radiofrequency (RF) field-that they hypothesized may be used to produce thermal cytotoxicity in malignant cells. METHODS Functionalized,(More)
Existing methods for growing single-walled carbon nanotubes produce samples with a range of structures and electronic properties, but many potential applications require pure nanotube samples. Density-gradient ultracentrifugation has recently emerged as a technique for sorting as-grown mixtures of single-walled nanotubes into their distinct (n,m) structural(More)
Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changed in discrete steps after exposure to acid, base, or diazonium reactants. The steps were uncorrelated in space and time and(More)
Unusually structure-selective growth of single-walled carbon nanotubes (SWNTs) has been attained using a CVD method with a solid supported catalyst. In this method, CO feedstock disproportionates on silica-supported catalytic nanoclusters of Co that are formed in situ from mixed salts of Co and Mo. The nanotube products are analyzed by spectrofluorimetry to(More)
The ability of near-infrared fluorescence imaging to detect single-walled carbon nanotubes (SWNTs) in organisms and biological tissues has been explored using Drosophila melanogaster (fruit flies). Drosophila larvae were raised on food containing approximately 10 ppm of disaggregated SWNTs. Their viability and growth were not reduced by nanotube ingestion.(More)
Aqueous dispersions of graphene oxide (GO) have been found to emit a structured, strongly pH-dependent visible fluorescence. Based on experimental results and model computations, this is proposed to arise from quasi-molecular fluorophores, similar to polycyclic aromatic compounds, formed by the electronic coupling of carboxylic acid groups with nearby(More)