Learn More
Botulinum neurotoxin (NT) is a potent inhibitor of neurotransmitter secretion, but its intracellular mechanism and site of action are unknown. In this study, the intracellular action of NT was investigated by rendering the secretory apparatus of PC12 cells accessible to macromolecules by a recently described "cell cracking" procedure. Soluble cytoplasmic(More)
Most studies on chitinase activity in lizards have been concerned with Palaearctic (European) and Laurasian (Middle Eastern and Asian) taxa. Several genera of Old World lizards, Anguis, Uromastix, Chamaeleo and Lacerta, have been shown to possess chitinolytic activity. To date, only one New World lizard, Anolis carolinensis, has been reported to exhibit(More)
Permeabilized PC12 cells exhibit a Ca(2+)-stimulated norepinephrine secretory pathway which is sensitive to botulinum neurotoxin serotypes A, B and E [Lomneth R., Martin T.F.J. and DasGupta B. R. (1991) J. Neurochem. 57: 1413-1421]. Two novel amino terminal fragments of the 150 kDa neurotoxin serotype E (approximately 112 and 48 kDa), produced by digestion(More)
The role of SNAP-25 (synaptosomal associated protein of 25 kDa) isotypes in the neurotransmitter release process was examined by varying their relative abundance during PC12 cell differentiation induced by nerve growth factor (NGF). Norepinephrine release by NGF-differentiated PC12 cells is more sensitive to type A botulinum toxin (BoNT/A) than by(More)
Zn2+-protease activity of botulinum neurotoxin causes the blockage of neurotransmitter release resulting in botulism disease. We have investigated the role of Zn2+ in the biological activity of type A botulinum neurotoxin by removing the bound Zn2+ by EDTA treatment, followed by monitoring its structure in terms of secondary and tertiary folding (second(More)
Response of the chick ciliary ganglion-iris muscle neuromuscular junction (NMJ) preparation to the botulinum neurotoxin (NT) was investigated. The 150 kDa serotypes A and E NTs inhibited muscle contraction in a dose dependent fashion. Neurotoxicity of type E NT increased 20-40 fold after mild digestion with trypsin. The 50 kDA light and 100 kDa heavy chains(More)
The approximately 150 kDa single-chain neurotoxin produced by Clostridium butyricum, reported to be similar to C. botulinum neurotoxin serotype E (Giménez and Sugiyama, Infect. Immun. 54, 926-929, 1988), was probed with trypsin and endoproteinase Lys-C. The two proteases cleaved the butyricum neurotoxin between residues Arg 421-Lys 422 and Lys 418-Gly 419,(More)
  • 1