Learn More
The aim of the present study was to determine if low-density lipoproteins (LDLs) and red blood cell (RBC) membranes from diabetic patients present an increased susceptibility to lipoperoxidation, which might be related to the increased incidence of atherosclerosis in diabetes. LDLs and RBC membranes were isolated from 11 insulin-dependent (IDDM) and 18(More)
Nitric oxide (NO) produced by platelet nitric oxide synthase (NOS) inhibits platelet activation by increased cytoplasmic cGMP levels. The aim of this study was to investigate platelet NOS activity in insulin-dependent (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM), which are characterized by enhanced platelet activation. HbA1 c levels, platelet(More)
Aims/hypothesis. The aim of the present study was twofold. Firstly, to determine whether diabetic platelets produce more peroxynitrite than normal platelets and secondly to correlate the peroxynitrite production with the intraplatelet induction of the inducible isoform of nitric oxide-synthase. Methods. Intraplatelet peroxynitrite production was monitored(More)
Na+/K(+)- and Ca(2+)-ATPase are the major ATP-dependent membrane-bound enzymes that regulate the cation transmembrane gradient which is altered both in red blood cell (RBC) senescence and in RBCs of diabetic patients. In an attempt to clarify the possible connection between diabetes mellitus and ageing, we investigated the relationship between RBC ATP(More)
Diabetic patients present alterations in the activity of a number of enzymes of the plasma membrane. The aim of this study was to verify if the modifications of the enzymatic activities in diabetes mellitus are associated with structural alterations of the cellular membrane. By means of the freeze-fracturing technique, we studied the structure of(More)
Several plasma membrane alterations have been described in diabetes mellitus. Data reported in gestational diabetes mellitus (GDM) suggested that these alterations might be present before the onset of overt metabolic derangement. On the basis of these data it is tempting to hypothesize that the reduction in the sodium pump activity might be due to a genetic(More)
In the present work we studied in vitro the action of low density lipoproteins (LDL) isolated from normolipemic insulin-dependent diabetic (IDDM) patients on transmembrane cation transport, nitric oxide synthase (NOS) activity, and aggregating response to stimuli of platelets from healthy subjects to elucidate whether the modified interaction between(More)
A fraction from normal human plasma inhibiting Na(+)-K(+)-ATPase has been recently identified as lysophosphatidylcholine (LPC). The aim of this study was to investigate the existence of a relationship between the activity of the cellular membrane Na(+)-K(+)-ATPase and plasma LPC in human diabetes. We studied 10 patients with insulin-dependent-diabetes(More)
It has been recently hypothesized that in PIH a placental oxidant-antioxidant imbalance might cause the release of lipoperoxidation products into the circulation, with subsequent damage of endothelial cell membranes. In this hypothesis the endothelial cell and further increase in circulating lipoperoxide levels, which are by themselves able to induce smooth(More)
The interaction between low density lipoproteins (LDL) and platelets might play a central role in the development of atherosclerosis in diabetes. The aim of the present study was to investigate whether the glycation of LDL is associated with modifications of their physico-chemical and functional properties and to study the action of glycated LDL (glycLDL)(More)