Learn More
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution(More)
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin(More)
We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag(More)
DNA-strand exchange promoted by Escherichia coli RecA protein normally requires the presence of ATP and is accompanied by ATP hydrolysis, thereby implying a need for ATP hydrolysis. Previously, ATP hydrolysis was shown not to be required; here we demonstrate furthermore that a nucleoside triphosphate cofactor is not required for DNA-strand exchange. A(More)
We have characterized the biochemical properties of Escherichia coli RecA142 protein, the product of a recA allele that is phenotypically defective in genetic recombination. In vitro, this mutant RecA protein is totally defective in DNA heteroduplex formation. Despite this defect, RecA142 protein is not deficient in all other biochemical activities. RecA142(More)
In the accompanying paper, RecA142 protein was found to be completely defective in DNA heteroduplex formation. Here, we show that RecA142 protein not only is defective in this activity but also is inhibitory for certain activities of wild-type RecA protein. Under appropriate conditions, RecA142 protein substantially inhibits the DNA strand exchange reaction(More)
  • 1