Learn More
Nondestructive techniques to obtain DNA from organisms can further genetic analyses such as estimating genetic diversity, dispersal and lifetime fitness, without permanently removing individuals from the population or removing body parts. Possible DNA sources for insects include frass, exuviae, and wing and leg clippings. However, these are not feasible(More)
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55(More)
Infection of quiescent fibroblasts with human cytomegalovirus (HCMV) was found to cause a rapid activation of cellular phosphatidylinositol 3-kinase (PI3-K). Maximum PI3-K activation occurred from 15 to 30 min postinfection. This activation was transient, and by 2 h postinfection (hpi), PI3-K activity had declined to preinfection levels. However, at 4 hpi,(More)
BACKGROUND/AIMS Telemedicine offers potential to improve the accessibility and quality of diagnosis of retinopathy of prematurity (ROP). The aim of this study was to measure accuracy of remote image based ROP diagnosis by three readers using receiver operating characteristic (ROC) analysis. METHODS 64 hospitalised infants who met ROP examination criteria(More)
The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With(More)
The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst).(More)
Custom-designed nucleases can enable precise plant genome editing by catalyzing DNA-breakage at specific targets to stimulate targeted mutagenesis or gene replacement. The CRISPR-Cas system, with its target-specifying RNA molecule to direct the Cas9 nuclease, is a recent addition to existing nucleases that bind and cleave the target through linked protein(More)
Custom-designed nucleases are a promising technology for genome editing through the catalysis of double-strand DNA breaks within target loci and subsequent repair by the host cell, which can result in targeted mutagenesis or gene replacement. Implementing this new technology requires a rapid means to determine the cleavage efficiency of these(More)
A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯(e)) from six 2.9  GW(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41(More)
The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of(More)