Learn More
Areas V1 and V2 of the visual cortex have traditionally been conceived as stages of local feature representations. We investigated whether neural responses carry information about how local features belong to objects. Single-cell activity was recorded in areas V1, V2, and V4 of awake behaving monkeys. Displays were used in which the same local feature(More)
Figures in which human observers perceive "illusory contours" were found to evoke responses in cells of area 18 in the visual cortex of alert monkeys. The cells responded as if the contours were formed by real lines or edges. Modifications that weakened the perception of contours also reduced the neuronal responses. In contrast, cells in area 17 were(More)
We have studied the mechanism of contour perception by recording from neurons in the visual cortex of alert rhesus monkeys. We used stimuli in which human observers perceive anomalous contours: A moving pair of notches in 2 bright rectangles mimicked an overlaying dark bar. For control, the notches were closed by thin lines so that the anomalous contours(More)
We have studied the mechanism of contour perception by recording from neurons in the visual cortex of alert rhesus monkeys. In order to assess the relationship between neural signals and perception, we compared the responses to edges and lines with the responses to patterns in which human observers perceive a contour where no line or edge is given(More)
Early stages of visual form processing were modelled by simulating cortical simple, complex and end-stopped cells. The computation involves (1) convolution of the image with even and odd symmetrical orientation selective filters (S-operators), (2) combination of even and odd filter outputs to a local energy measure (C-operator), (3) "differentiation" of the(More)
Psychophysical studies indicate that perception of the colour and brightness of a surface depends on neural signals evoked by the borders of the surface rather than its interior. The visual cortex emphasizes contrast borders, but it is unclear whether colour surface signals also exist, whether colour border signals are orientation selective or mainly(More)
Form perception in random-dot stereograms is based on information that resides in the correlation between the two images, but is not present in either image alone. We have studied the coding of stereoscopic figures in the neural activity of areas V1 and V2 of alert behaving monkeys. While cells in V1 generally responded according to the disparity of the(More)
Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring 3D layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border(More)