Rögnvaldur G. Möller

Learn More
Criteria for quasi-isometry between trees and general graphs as well as for quasi-isometries between metrically almost transitive graphs and trees are found. Thereby we use different concepts of thickness for graphs, ends and end spaces. A metrically almost transitive graph is quasi-isometric to a tree if and only if it has only thin metric ends (in the(More)
Let D be a locally finite, connected, 1-arc transitive digraph. It is shown that the reachability relation is not universal in D provided that the stabilizer of an edge satisfies certain conditions which seem to be typical for highly arc transitive digraphs. As an implication, the reachability relation cannot be universal in highly arc transitive digraphs(More)