Learn More
A celery petiole phloem cDNA library was constructed and used to identify a cDNA that gives Saccharomyces cerevisiae cells the ability to grow on mannitol and transport radiolabeled mannitol in a manner consistent with a proton symport mechanism. This cDNA was named AgMaT1 (Apium graveolens mannitol transporter 1). The expression profile in source leaves(More)
BACKGROUND In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of(More)
The leaf sucrose transporter SUT1 is essential for phloem loading and long-distance transport of assimilates. Both SUT1 messenger RNA (mRNA) and protein were shown to be diurnally regulated and to have high turnover rates. SUT1 protein was detected by immunolocalization in plasma membranes of enucleate sieve elements (SEs) in tobacco, potato, and tomato.(More)
Mannitol is one of the primary photosynthetic products and the major phloem-translocated carbohydrate in Olea europaea L., an important crop in the Mediterranean basin. Uptake of mannitol in heterotrophic cell suspensions of O. europaea was shown to be mediated by a 1 : 1 polyol : H+ symport system with a Km of 1.3 mM mannitol and a Vmax of 1.3 nmol min(-1)(More)
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink(More)
Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological(More)
The accumulation of sugars in grape berries requires the co-ordinate expression of sucrose transporters, invertases, and monosaccharide transporters. A monosaccharide transporter homologue (VvHT1, Vitis vinifera hexose transporter 1) has previously been isolated from grape berries at the veraison stage, and its expression was shown to be regulated by sugars(More)
The sucrose transporter gene AtSUC5 was studied as part of a programme aimed at identifying and studying the genes involved in seed maturation in Arabidopsis. Expression profiling of AtSUC5 using the technique of real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) showed that the gene was specifically and highly induced during(More)
Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which(More)
In olive fruits, sugars are the main soluble components providing energy and acting as precursors for olive oil biosynthesis. Large quantities of glucose, fructose and galactose are often found in olive pulp. To analyze sugar transport processes in Olea europaea, a cDNA encoding a monosaccharide transporter, designated OeMST2 (Olea europaea monosaccharide(More)