Learn More
In this paper, we discuss the evaluation of blind audio source separation (BASS) algorithms. Depending on the exact application, different distortions can be allowed between an estimated source and the wanted true source. We consider four different sets of such allowed distortions, from time-invariant gains to time-varying filters. In each case, we(More)
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t,(More)
rates taken so high that further increasing them produced no visible changes in the figure. As can be seen, the a;b obtained in that way turns from a well-behaved function for the values b = 1:5, 2:5 into a quite irregularly behaved one when b approaches 2 or 3. Abstract—The purpose of this correspondence is to generalize a result by Donoho and Huo and Elad(More)
After a decade of extensive study of the sparse representation synthesis model, we can safely say that this is a mature and stable field, with clear theoretical foundations, and appealing applications. Alongside this approach, there is an analysis counterpart model, which, despite its similarity to the synthesis alternative , is markedly different.(More)
The purpose of this correspondence is to extend results by Villemoes and Temlyakov about exponential convergence of Matching Pursuit (MP) with some structured dictionaries for "simple" functions in finite or infinite dimension. The results are based on an extension of Tropp's results about Orthogonal Matching Pursuit (OMP) in finite dimension, with the(More)
This paper addresses the modeling of reverberant recording environments in the context of under-determined convolutive blind source separation. We model the contribution of each source to all mixture channels in the time-frequency domain as a zero-mean Gaussian random variable whose covariance encodes the spatial characteristics of the source. We then(More)
In this paper, we address the problem of audio source separation with one single sensor, using a statistical model of the sources. The approach is based on a learning step from samples of each source separately, during which we train Gaussian scaled mixture models (GSMM). During the separation step, we derive maximum a posteriori (MAP) and/or posterior mean(More)
The purpose of this paper is to study sparse representations of signals from a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces, the canonical frame coefficients are shown to provide a near sparsest expansion for several sparseness measures. However, for frames which are not localized, this no longer holds true and(More)
Probabilistic approaches can offer satisfactory solutions to source separation with a single channel, provided that the models of the sources match accurately the statistical properties of the mixed signals. However, it is not always possible to train such models. To overcome this problem, we propose to resort to an adaptation scheme for adjusting the(More)