Rémi Delhuille

Learn More
We have constructed an atom interferometer of the Mach-Zehnder type, operating with a thermal lithium beam. Atom diffraction uses Bragg diffraction on laser standing waves. With first order diffraction, our apparatus has given a large signal and a very good fringe contrast (74%), which we believe to be the highest ever observed with atom interferometers.(More)
We explore the feasibility of single atom detection on an atom chip by using a tiny fluorescence detector mounted on the chip. Resonant fluorescence from a trapped ultracold atom will be collected with a miniature aspheric lens and taken out of a vacuum chamber through a fiber. During detection, the atom can be held at the focus of the detector with a(More)
We have constructed an atom interferometer of the Mach-Zehnder type, operating with a supersonic beam of lithium. Atom diffraction uses Bragg diffraction on laser standing waves. With first order diffraction, our apparatus has given a large signal and a very good fringe contrast (74%), which we believe to be the highest ever observed with thermal atom(More)
  • 1